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TWO NONISOMORPHIC K-AUTOMORPHISMS 
WITH ISOMORPHIC SQUARES* 

BY 

D A N I E L  J. R U D O L P H  

ABSTRACT 

By taking two different skew products of an initial t ransformation and a two 
point space, two measure  preserving t ransformations with the same square a r e  

constructed.  By direct a rguments  on the doubly infinite partition names  of 
points in these processes, they are shown to be K-au tomorph i sms  and non-  
isomorphic. 

1. Introduction 

Through Ornstein's work on the isomorphism theory of Bernoulli-shifts [3], 

[4], [5], it is known that any square root of a Bernoulli-shift is Bernoulli. Hence 

any two such roots are isomorphic. Ornstein has also constructed a K- 

automorphism which has no square roots [7], and J. Clark has extended this to a 

K-automorphism with no roots at all [2]. Our goal here is to construct two 

K-automorphisms which are nonisomorphic but have isomorphic squares. The 

square, thus, has two nonisomorphic square roots. These transformations are 

given as two skew products of a K-automorphism that is not Bernoulli with a 

two point space. We use the arguments developed by Ornstein and Shields [6] in 

their construction of uncountably many nonisomorphic K-automorphisms to 

show they are K-automorphisms and are nonisomorphic. 

The thought behind this construction is the following trivial example of two 

transformations with isomorphic squares. Let fl' be a two point space, T1 the 

interchange map and T2 the identity map. Obviously T~ = T 2, as both are the 

identity map. The maps which we construct will be skew products with a 

K-automorphism which preserve this identity on the square. 

*This work is a part of the author ' s  Ph.D. dissertation written at Stanford University under  D. S. 

Ornstein.  
Received October  28, 1975 
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2. Construction of T1 and T2 

We will construct first an initial transformation W following the method used 

by Ornstein and Shields [6]. Hence, we will be sketchy in some of the details of 

the construction and refer the reader to this paper or Ornstein's text, Ergodic 
Theory, Randomness and Dynamical Systems (see [8]) for a more careful 

consideration of such constructions. 

The map W will be defined as the shift transformation on doubly-infinite 

names from a partition (E, F, So, S). The names are built up through a block 
structure. We will describe how to make the initial O-blocks, and state inductively 

how ( n -  1)-block names are strung together to form n-block names. 

A 0-block name will consist of two F 's  followed by 2 ~°° So's, followed by two 

E's .  An n-block name will be made of (n - 1)-block names as follows. Select 

independently a sequence of 22" (n - 1)-block names. Pick a value f E {1... n + 1} 

independent of the ( n -  1)-block names chosen, each with equal probability. 

For this value of f and this sequence of (n - 1)-block names, Fig. 1 shows what 

the n-block name will look like. 

2 

S's ( n - l ) -  ( n - l ) -  ( n - l ) -  ( n - 1 ) -  

block block block , block / 

l l i f / ' / / , I  l "/xl 
2[ F 's  

2 

(n - 1)- (n - 1)- S's 

t,~, block block 

i I ," 11 I 
s(n)-I  2 s ( n ) - I  3 s ( n ) - I  (2 z " - 2 ) s ( n ) - I  ( 2 5 " - l ) s ( n ) - I  2 n - 2 [ E ' s  

S's S's S's S's S's 

Fig. 1 

This gives the various possible n-block names. Each is equally likely, and the 

number of F's  at the beginning of the block and which (n - 1)-blocks occur in 

the name are equidistributed over their possible values and independent of each 

other. If we let [ (n)  = 2(n + 1), the variability of the F segment, s(n) = 100n 3, 

the increment size in the spacers, and h(n) be the length of an n-block, then we 

have 
rl 

~[ ( i )<s (n ) - I  and 2~°"(s(n)-l)<h(n-1). 
i = 0  

Further, if we let l-l, be the set of all points in an n-block, then tz (f~0) > ½/x (fO, 

where ~ is the entire space on which W is defined. 

To construct T~ take the direct product of l) with the two point space, {0, 1}. 
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Call this space 1). On ~ let P be the partition (E x {0, 1}, F x {0, 1}, S × {0, 1}, 

So x 0, So × 1) = (E, F, S, r, b). We will often speak of a point in r or b as colored 

red or black. For a point of this product T~ will be defined by stating how the 

color of a point changes as it moves along an n-block. That is to say, 

T~(w, *) = (W(w),  Sw (*)), where Sw is either the interchange or the identity map, 

and either fixes or switches the color. There are two colorings for 0-blocks given 

in Fig. 2. 

I I ' / / / / l l / / l / l l l l l l l l l l / / l l / / / / I / / / i / i l / I / I / / / , l  I 
F's  r E ' s  

II 11 
F's  b E ' s  

Fig. 2 

Suppose we have shown how to color the red and black (n - 1)-blocks. Fig. 3 

now shows how to color a red and a black n-block. By a red n-block we mean an 

n-block whose first 0-block is red. 

This prescription tells us whether, at the end of an (n - 1)-block in an n-block, 

Sw is the switch or the identity map. Thus a red n-block is a sequence of 

( n -  1)-blocks, switching between red and black ( n -  1)-blocks in the order 

rbbr rbbr . . ,  rbbr, and a black n-block is colored in just the opposite order, 

b r rbbr rb . . -b r rb .  This defines T~. 

We can define the map T2 as follows. Let T' be the interchange map on the 

second coordinate of 1)× {0, 1}. Now let T2(ff,)= T1(T'(ff)) for all ff E ~.  As 

Red 

I1~1 t~,~11~-"q I'//,1 I'//,11>C~l l'~x~117/,1 ~' tls,,~ I~117",1 In-block 
red black black red red black black red I t black black red 

(n - 1 ) ] (n -  1) 

block block t ~  Black 

I I,~11~'/,I I '/x.I I~-'q l~k~,l 1"//,11 "//,11~;~J I'//.11~zl I~1 In-block 
black red red black black red red black I red red black 

(n - 1) 

block 
Fig. 3 
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TIT '= T ' T ,  we get T7 = T?T% Looking at Fig. 3, whenever T~ switches the 

{0, 1} coordinate of if, T2 fixes it and vice versa. Hence to get a colored n-block 

T2 name, we take an n-block T1 name and interchange the colors in odd 
positions and fix those in even. 

Thus there are two possible colored 0-block T2 names, as in Fig. 4. 

[ I~, ~)~1/. 1~.17. i~,1Y. ~ .  IX I~. I / .  t~. [ S I ~  ~ ,  1~.1~. I~. [ 1 Red O-block 

F r b r b r b r b r b r b r b r b E 

I Iglx.l .lxl .lxl lxl lx.l lx.l l ,  .lxl l/I Imack O-b,ock 
F b r b r b r b  r b r b r b r b r E  

Fig. 4 

Red and black T2 (n - 1)-blocks string together to form a red and a black T2 

n-block, but notice that as the F's always come in even blocks, and ks(n)-I  is 

odd, that the possible color sequences are, for a red T2 n-block, 

rrbbrrbbrr . . .bb,  and for a black T2 n-block, bbrrbbrrbb. . . r r .  It is this 

difference between T1 and T2 names which will force T~ and T2 to be 

nonisomorphic. The following fact is now trivial. 

THEOREM 1.1. T~ and T 2 2 are isomorphic. 

PROOF. We have even more, that T~ = T~T '2= T~. 

3. TI and 7'2 are K-automorphisms 

As T~ and T~ are the same, and roots and powers of K-automorphisms are 

K-automorphisms, it will suffice to show T1 is a K-automorphism. 

Our argument will follow the format of the similar result in Ornstein and 

Shields [6], only with a minor variation to cope with the evenness of the 

F-sections and the different colorings. Let P be the partition {E, F, S, r, b}. We 

will, as is usual, prove the following version of the K property. 

Given any e > 0 and integer k, there is an N such that for any THEOREM 1.2. 

m > O and n > N, 

0 n + k  

V T1 (P) J_" V T~ (P). 
- - m  n - - k  
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PROOF. First fix e > 0 and the integer k. Choose No so large that the set of all 

w in an No-block, more that k positions from either end, is at least (1 = e 2). Call 

this subset 1). Let L be so large that j r (L)>  h(No+ 1), and let N - - h ( L ) +  1. 
Now fix n > N and let ~n = T-"  (~). As ~ ( ~ )  > 1 - e 2, it will suffice to show 

0 n + k  

V TI(P)Ifi" ± V TI(P)Ifi n. 
- m  n - k  

Let A be an atom of o , V_m T1 (P), i.e. a set with a fixed P-name from - m to 0. 

We want to show that the distribution of T, P-names from TT-~(A ) to TT+E(A ) is 

the same as that on TT-E((~ ") to T]'+k(l) ~) i.e. on T~k((~) to T~(I)). 

t 
r;-(w) 

L-block 
, .  . . ,  

, ,  [I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  l...l . . . . . .  1 .... 1 . . . . . . . . . . . . . . . . . . . . .  

w 
r'~-k(w) T'~÷k(w) 

L(w) 

No(W) 
Fig. 5 

Define the functions L(w) ,  F(w) and No(w) as follows. L(w) is the largest 

positive integer less than n such that TL,(W)(w) is the first point of an L-block. 

F(w) is the first integer larger than L(w) such that T[(W)(w)f~ F. No(w) is the 

largest integer less than n not in an No-block and in F. These are all functions of 

the name only and hence are measurable. Notice that the size of n makes all of 

these well defined on 1). Fig. 5 indicates the situation diagramatically. 

Partition A into sets A~ which have a fixed P-name from T?m(w).. • T~(W)(w), 
and from T~(W)(w) . . .  T~o°~)(w) (these sections are dashed in the diagram). 

Thus, in A~, T~(w) must lie in an L-block with a fixed P-name from F(w) to 

No(w ), hence always in an (No + 1)-block in the same position in the L-block and 

with a fixed number of F 's  at its beginning. The F section at the beginning of the 

L-block,  though, can take on any even value, subject only to the restriction that 

this value will allow T~-k(w) ... T?+E(w) to be in an No-block in the proper  

(No+ 1)-block. The length of this F section is independent of the No-block 

names in this (No+ 1)-block, and as f ( L ) >  h(No+ 1), will put T~(w) in all the 



Vol. 23, 1 9 7 6  NONISOMORPHIC K-AUTOMORPHISMS 279 

N0-blocks, at all allowed positions with equal probability, that is, always at even 

positions, or odd positions. 

As half the No-blocks are at an odd distance into the (No + 1)-block and half 

even, the independence of the uncolored No-block names from the size of this F 

section now implies that V~+_~TI(E, F, So, S)/A~ has the same distribution of 

names as V ~_+~ T~ (/~, ,e, So, S)/I)~. This will imply that T~ on uncolored names is 

K. What about the colored names? Notice that exactly half the odd position 

No-blocks and half the even position N0-bloeks are red. As the uncolored 

P-name of T~-k(w) ' ' '  TT+k(w) will lie in any even position No-block with equal 

probability, it will be in a red or black even block with equal probability. The 

same holds for odd blocks. Hence a name in V~+_~T~ (E, F, So, S)/A~ is in a black 

No-block half the time, and in a red N0-block half the time. Thus V ~+_~ T~ (P)/A, 
n + k  i ~ n has the same distribution of name~ as V ,-k T~ (P) / I ) .  The same, then, holds for 

A, the union of the A~, and the result follows. 

4. T~ and T2 are nonisomorphie 

The thrust of this argument is to show that any isomorphism between T1 and 

T2 must preserve so much of the block structure of their P-names that the fact 

that the color orders of (n - 1)-blocks in n-blocks are different in the two will 

give a contradiction. We begin by showing that in a T~, P-name, the only thing 

that looks like an n-block is an n-block. Notice that many of the arguments here 

are only slightly affected by the colorings. 

Let x and y be any two points in IL Each has a T1 (or T2), P-name which we 

can write as {A~}T~_~ and {B,}7~-~. In these names will occur n-blocks, i.e. 

sequences A ~ . . .  Ak+h(,)-i and Bk . . . .  B k ' * h ( n ) - ~  which are T1 or T2, P-names 

across n-blocks. The following facts are in terms of such indexed names. 

LEMMA 1.1. Let Ak "" • A k + h t . ) - I  and Bk . . . .  Bk '+h(n ) -~  be two T~(T2), P-names 

across n-blocks I k - k ' r  = h ( n ) - L .  I f  L is such that h ( n ) - E T ~ o f ( i ) > L  > 
h(n)/2 ~÷1, then A, ~ B, for at least ~L values i ~ {sup (k, k ' ) . . .  h (n) - inf (k, k ')}, 

where ~ is independent of n. 

PROOF. Let 

inf inf 
en = n-block names 

such L A and B 

number of places A,~ B~). 
L 

It is clear eo => l/h(0). 
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Now consider two n-blocks A and B overlapping in L places. As 22"s(n)< 

h (n - 1)/28", any (n - 1)-block in A and in the overlap, either overlaps a single 

( n -  1)-block in B in at least 

places, or it overlaps two consecutive (n - D-blocks, each in at least h (n - 1)/2" 

places, but a total overlap of at least ( 1 - ( 1 / 2 s " ) ) h ( n - 1 )  places. If any 

( n -  1)-block in A overlaps an ( n - D - b l o c k  in B in more than h ( n - 1 ) -  

E2-~f(i) places, then it is the unique such one as s ( n ) > E L o f ( n ) ,  2~"s(n)< 

h(n - 1), and L < h(n)  - ELof(i).  Hence, except for possibly this one block, and 

the one block at the end of the overlap, all (n - 1)-blocks in the overlap satisfy 

the condition for the definition of e,_~. Thus the number of A~¢ B~-~h(,~-L~ is 

> [ L { ~ ( ~ " - ~ ) ' ~ - 2 h ( n - 1 ) ) e . _ , ( 1 -  21 2~.) = \  \ u(~.)  ] 

a s  

number of blocks size of 

i in (n - 1)- with bad overlap 

blocks in overlap 

overlap 

> e .  iL[1"*(11"-1)~(1-1)(1 21 ~ . ) ,  

~(11" O> -1 and h( L -  1) 1 
(~ . )  2 < 2 2" " 

Taking the infimum over all such L, A and B, and recalling t* (11o)/p. (11.) > ½ 

e,>eo½I~I_" ( 1 - 1 ) ( 1  21, 21.) .  

This last sequence is bounded away from zero and we have the result. 

COROLLARY 1.1. Let A = Ak • • • Ak+h(,)-i and B = Bk . . . .  Bk,+h{.)-~ be two 

n-block T,(T2) P-names, n > 4, [ k - k'[ = h ( n ) -  L. Suppose L > h(n)/2"-", and 

L _-> K > h (n)/2" % I[[or some L sup (k, k ') _-< j _-< h (n) + inf (k, k ') - K, and those 

i E { j , . . . , j + k }  we have A~ /B~  on less than gK/4 values i, then L >  

h ( n ) -  E7_o/(i). 

PROOF. Suppose there is such a K and j. The block of K places in A on which 

there are fewer than gK/4 errors must be at least half in complete (n - 1)-blocks. 
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At least half of these must have fewer than gh (n - 1) errors. By Lemma 1.1, such 

an (n - 1)-block must lie within YT=-o~f(i) of an (n - 1)-block in B. This collection 

of such (n - 1)-blocks must constain at least two blocks. 

The distances between pairs of (n - 1)-blocks in an n-block come in values 

always at least s(n)> ET-gf(i) apart. Hence these two blocks occupy the same 

position in B as they occupy in A. But then A and B must overlap in at least 

h(n)-E?=of(i) places. When two n-block names Ak'' 'Ak+h(,)-i and 

Bk . . . .  Bk.+h(,) ~ have the property that I k - k ' l  < E%of(i), we will say the blocks 
are close. 

Thus if two blocks match well, even on a small segment of a block, then the 

blocks must be close. The next result tells us that if two n-blocks match well 

across some fraction of their overlap, not only are the blocks close, but along this 

fraction the match between 0-blocks is nearly perfect.We will again consider an 

overlap of size L, i.e. in the n-blocks A =Ak  "''Ak+h(,)-~ and B = 

Bk . . . .  Bk'+h(,)-,, we will have I k - k '  I = h ( n ) -  L. 

Let (l, k)A and (1, k)B be the k th / -b locks  in A and B. Say (l, k)  is close if the 

blocks (l, k)A and (l, k)~ are close as/-blocks;  that is to say, if A~ is the first point 

in the block (l, k)A and Bj is the first point in (l, k)B, then I J -  i l < El=0f(i). 

LEMMA 1.2. Given e > 0 ,  if A and B are two TI(T2) n-block names, 
n > 3 - l n ( e ) ,  h ( n ) - I k ' - k l = L ' ,  h(n)>=L>=h(n)-Y..",=of(i), L>=K>= 

h(n)/2" 4, and A , ~  B, for at most e~K values i E (I;'" ",j + k), where j is some 

value sup(k, k') <= j <- h (n ) + inf(k, k ' ) -  K, then at least (1 - 5e)  of the complete 
(0, k)a in Aj . . .  Aj+k are close to (0, k)B. 

PROOF. By Corollary 1.1, (n, 1) is close. Let 37 = {(l, k)l(l, k) is not close, but 

the (l + 1, k ') containing (l, k)  is}. As (n, 1) is close, any (/, k)  which is not close is 

contained in some (l', k ' )E  ~f. Further, if (l, k) is close, then the (l + 1, k') 

containing (l, k) is also. Hence ~ is precisely the maximal non-closed blocks, and 
any (0, k) block in an (/, k ' ) ~  ~ is not close. 

For (l, k) E ~,  as the (l + 1, k ') containing (l, k) is close, (l, k)A and (l, k)~ 

must overlap in at least h(l)-Zl+=~o[(i)> h(l)/2 places. By Lemma 1.1 there are 

at least ½gh(l) errors between the A and B names across (l ,k)a. Let 5 ( '=  

{(/, k) E 37 and (l, k)a lies in positions j , "  ", j + K in A }. 

As the (/, k)  in 37' are disjoint, we get at least ½Yv.k~.h (l) errors between A and 

B across j , - . . ,  j + K. Now noting that 

h (1)-> h (0) x (number of non-close (0, k)  in L ' "  ", J + k ) -  h (n - 1), 
(t, k )~-~' 
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we get 

egK >-_ (h (0)/2) x (number of non-close (0, k)  in j , . . . ,  j + k)  - h (n - 1). 

The number  of 0-blocks in j , . . - , j  + k is at least K/2h(O). Hence the fraction of 

unaligned (0, k)  in j , . - . ,  j + k is at most 4e + (4Kh (O)/h (n - 1)) <_- 4e + 4/2 "-1 < 

5e by our choice of n and the result follows. 

LEMMA 1.3. There is an e' > 0 such that the following holds. For n >= 8, let A 

and B be T~( T2) n-block names. Let L > h ( n ) / 2  "-4 and L >= K >= h (n )/2" 4. If for 

some j, sup (k, k ' )  < j -< h (n) + inf (k, k') - K, and all i E {j , . . . ,  j + K} we have 

A , #  B, on at most e 'K  values i, then L > h ( n ) -  E~-of(i), and A and B are both 

red or both black n-block names. 

PROOF. If e '  < g and n _>- 5, the first half of the result follows from Corollary 

1.1. To get A and B with the same color let B '  be an n-block name that has the 

same (E, F, So, S) name and indices as B, and the same color sequence as A. By 

Lemma 1.1, if e '  < e/20 as n => 8, at least 3/4 of the 0-blocks in A from j to j + K 

are close to the corresponding ones in B ' ,  as B and B '  have the same uncolored 

names. The uncolored names of A and B '  differ in at most e ' K  places across j to 

j + K. Whenever  a 0-block in A and B '  in the same position are close, they have 

the same color. Hence A and B '  have different colored names in at most ¼K 

places across j to j + K. Thus B and B '  have different colored names in at most 

(¼+ 2e')K places. Make sure 2e '  < 1/8. As B and B '  have the same uncolored 

names, B and B '  have different colors only when they have different colors in 

every colored space. Hence our choice implies B and B '  have the same color. 

Hence A and B do. This completes the lemma. 

Now suppose there is a measurable,  measure preserving ~b with &Tl~b t = 7"2. 

As ~b is measurable,  & ~(P) C V_~= T~ (P). Thus given any e there is an N ( e )  with 

~b-~(P) C ~ w N.) , N,~ -~ (P), and - N ~ T I ( P )  That is to say, there is a /5(e)C V ~") "r, 

] /5(e),& ~ ( P ) I < e .  Hence,  for almost every w E ~ ,  the P -name  of w from 

- N ( e ) +  k to N ( e ) +  k will determine what atom of /5(e) ,  T~(w) is in, and this 

/5(e) name agrees with the P -name  of T~(dp(w)) for all but a set of k ' s  of density 

at most e. 

Let w be such a good point in ~ .  As above, in the TI, P -name  of w, let A, B, C 

etc. denote  occurrences of an n-block P-name  in the P-block of w, i.e. a set of 

points T~ ( w ) . . .  T~+ht")(w) whose P -name  is an n-block name. Further, let (A) ,  

or (A - B ) ,  or (A - B -  C) ,  denote  the collection of all occurrences of the 

P -name  of A in the P -nam e  of w, or of A - B, or the triple A - B - C, without 

specifying the spacers between the blocks A and B and C, but with A and B 
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and C all in the same (n + 1)-block. A block A will /5(e) code a-well if the P ( e )  

name of T ~ ( w ) . . .  T~+h~"~(w), and the P-name of T ~ ( 6 ( w ) ) " "  T~+ht")(~b(w)) 

differ in at most ah(n)  places. The following lemmas now show that such a ~b 

must preserve much of the block structure. Notice that Lemmas 1.4, 1.5 and 1.6 

do not depend critically on the coloring, but rather on the block structure. 

LEMMA 1.4. For all but at most ~/-~ of the classes (A ),, for alI A E (A ), but 

a set of density at most ~/2-e~, A f i (e)  codes ~/~e-well. Similarly for the classes 

(A - B) ,  and (A - B - C),. 

PROOF. If not, then the density of errors is at least ( / ~ ( f l , ) / ~ ( l ) ) ) ~ 3  > e, a 

conflict. 

LEMMA 1.5. Given ~ > 0, there is an N, such that for n > N, for all but at most 

of the classes (A ),, (A - B) ,  and (A - B - C),, for all but a set of n-blocks A 

in a class of density at most ~, A maps by ~ to the interior of an (n + 1)-block. 

PROOF. This follows as (h(n) /h(n  + 1))-~0 and /z(~),)--~/z(~). 

We now begin to demonstrate the rigidity of the block structure under 

isomorphisms. 

LEMMA 1.6. Given any e" and i, if N is large enough, all but at most e " of the 

classes (A ),, for all but a set of A E (A ), of density e ", qS(A ) contains (i - 1)/i of 

an n-block in the 7"2 name for n > N. 

PROOF. From Lemmas 1.4 and 1.5, for n large enough, all but 2 ~ e  + g of 

the n-block pairs (A - B),, ~b(A - B)  lie in the interior of an (n + 1)-block with 

both A and B/5(e)  coded 4~2e-well  for all but ~ e  + f of the pairs A - B. The 

pair A - B can occur with any even (or odd) spacing in s(n + 1) - 1, 2s(n + 1) - 

1,. •., (22t"÷~)- 1)s(n + 1) - 1, each with equal probability, which by ergodicity is 

equivalent to density in (A - B),.  Choose eand  ~ so that for all n, (g + 43~2e < 

(2 "÷~- 2)/(2 " + ' -  1) and (5/((1/2i)-(1/(2i)8)))~/4e< e' of Corollary 1.1. Then 

there must be two occurences in A - B which have both A and B /5 (e )  coded 

4 ~ 2 e  well to the interior of an (n + 1)-block, but where the spacings between A 

and B differ. Call these occurences A - B and A ' -  B '  with spacings ks(n + 1) 

and k 's (n  + 1) respectively. Under  these circumstances, suppose ~ (A)  contains 

less than ( ( 2 i -  1)/2i)h(n) of the n-block C it overlaps, as it codes into an 

(n + 1)-block (see Fig. 6). 
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Fig. 6 

If n is large enough that 2i < 2 "/1°, then 4)(B) contains at least 

h(n) [h(n)~ h(n) 
2i - \(2i)~} > 2" 

of the block C. Let ~ and r I be the two sections of C that A and B overlap, and 

t*' and rl' the corresponding sections in 4~(A ') and 4~(B'). As A, B, A '  and B '  all 

code 4W4e-well ~/ and > '  differ in at most 

, ( h ( n )  
2N(e')+4~/47eh(n)<e 2i+(208 ] 

if n is large enough that N ( e ) <  ~/-eh(n). If n is large enough, as they lie inside 

an (n + 1)-block, p.' and r/' both intersect n-blocks in at least h(n)/2 "÷1 places. 

The above inequality says / , '  and r/' must, by Corollary 1.1, lie in these n-blocks 

within E~'=of(i) of the way they lie in C. But as h(n - 1)/21°" > s ( n ) >  ET=of(i), 

no such blocks could exist. Hence 4~(A) and likewise 4~(B) must contain at least 

( ( 2 i -  1)/2i)h(n) of an n-block. Hence, for n large enough of all the (A),,  at 

least 1 - (2 3~/2e + ~) contain an A, coded ~ 2 e  well for which 4~(A ) overlaps an 

n-block in at least ((2i - 1)/2i)h (n) places. But if any other A '  E (A) codes ~2ee 

well into the interior of an (n + 1)-block, then as above it must also overlap an 

n-block within ET=of(i) of the way A does, hence overlap in at least 

((2i - 1)/2i)h (n) - ~ f(i) > ((i - 1)/i)h (n) 
i = O  

places. Thus with ~/2ee + ~ < e"  we get the result. 
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In fact, if C and C' are the n-blocks that A and A '  overlap, and A = T~(A '), 

then T~k(C) and C' agree in at least 1 - 2 ~ 2 e -  (1/i) places. Such A make up all 

but 2~/~ee + ~ of the classes. Hence, we also get the following fact. 

LEMMA 1.7. If n is large enough, and A and A ' =  T~(A)E (A),, both of 
which P(e) code ~/2e well and ~b(A ) and ~b(A') overlap n-blocks C and C' 

respectively, each in more than (3/4)h(n) places, then T~(C) overlaps C' in at 
least ( 1 - E L o f ( i ) ) h ( n )  places, and C and C' have the same color. 

PROOF. This follows from the above comment and Lemma 1.2. 

We will say a class (A)n is coded a-very well if for all but a of the A E (A }, 

~b(A) overlaps an n-block C in (3/4)h(n) places, and any two such overlapped 

blocks C and C'  are overlapped in sections differing by at most ELof(i), and 

have the same color. 

COROLLARY 1.2. Given a > 0, if n is large enough, all but a of the n-block 

classes (A ), code a-very well. 

THEOREM 1.3. The maps T, and T2 are nonisomorphic. 

PROOF. We argue by contradiction. Suppose an isomorphism ~b exists. Define 

the following map qb on classes of n-block T,, P-names in the T1, P-name of w. 

In an n-block P-name take the ( n -  1)-block names in positions 4k + 2 and 

4k + 3 and switch them, and fix the names in positions 4k + 1 and 4k + 4. Let 

qb((A)) be the class of occurrences of the name formed from A by this process. 

This map takes classes of n-block T~, P-names to each other (but notice not T2, 

P-names). 
In an n-block name define a quadruple of ( n -  1)-block names as those 

occupying positions 4k + 1, 4k + 2, 4k + 3 and 4k + 4. Let a = 1/2 ~2 and choose 

N by Corollary 1.2 so that (*) the density in the T, P-name of w of n-block 

quadruples, all four of which code 1/212-well into the same (n + 1)-block is at 

least 

y • 

density of quadruples density of (n + 1) 

all coded 1/212 very well blocks not coding 

to an overlap of 

length at least 

(3/4)h(n + 1) 

=>5/8 for n->N.  

J 
v 

density of those 

quadruples in (n + 1) 

blocks which overlap 

in (3/4)h (n + 1) places, 

but not in this overlap 
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Now consider A, B, C, D, a quadruple in fi~ E (A), and A' ,  B', C', D' ,  the 

image quadruple in some , 4 ' C  qb((,4)). Suppose A, B, C, D, A ', B', C', D' ,  all 

code 1/2~2-well and into the same (n + D-blocks respectively (see Fig. 7). 

I---'] F - ]  7--q I---] 

................ IAll il J"it J il . . . . . .  

Fig. 7 

Let E, F, G, H, E' ,  F', G', H' ,  be the n-blocks indicated in the diagram in the 

image of fi~ and A' .  E lies below A within E~'_,,f(i) of how E '  lies below A' ,  

similarly F below B and F'  below B',  G below C and G'  below C', H below D 

and H '  below D'.  As s(n + 1) > E~'=0f(i), this forces E to lie in C in the same 

n-block position as A in A, similarly E '  lies in C' as the same n-block as A ' i n  

'. Then E, F, G, H must have colors rrbb or bbrr. Further, E' ,  F', G',  H' ,  have 

the same colors as E, F, G,/4. But then in C'  the colors have order rbrb or brbr, 
neither of which ever occur. Thus both quadruples A, B, C, D and A ', B',  C', D '  

could not be coded 1/2'2-very well into the same (n + l)-blocks. Thus the density 

of such quadruples is at most 1/2, conflicting with (*). Hence no isomorphism 
could exist. 

This example also provides a counterexample to a conjecture of K. Berg [1]. 

Suppose we can write a transformation in two ways as 0-entropy x K, i.e. as 

T × K ,  and T x K 2  where T is the zero entropy part and K1 and K2 are 

K-automorphisms. Is K~ then isomorphic to K2? The answer is yes if either K~ or 

K2 is known to be Bernoulli, from the work of J. P. Thouvenot [10]. But let T be 

the switch map on a space {a, b}, and let K~-- T~ and K2 = /'2. Define 

(o:(a,b)×lq×(O, 1)--~(a,b)xfl×(0,1) by 

4,({a, w , 0 } ) =  {a, w, 0} 

w, 1}) = {a, w, 1} 

~b({b, w, 0}) = {b, w, 1} 

~b({b, w, 1}) = {a, w,0}. 
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Then by either looking at how ,;b affects names or computing it out, 

,;b(T x T~)= T x T2(4~), and 4~ is the identity map on the zero entropy factor 

{a,b}. Thus the transformation T x T~ can be written in two ways as zero 

entropy cross a K-automorphism but the two K factors are not isomorphic. The 

Pinsker algebra in this case is terribly simple. It would be interesting to try to get 

such an example where the Pinsker algebra is mixing. 
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